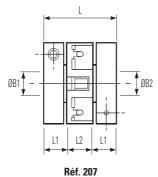
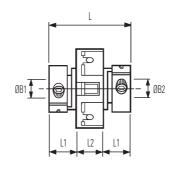


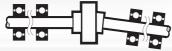
Moyeux à vis de blocage




Accouplemen	nt Réf. 221
Taille	L
18	16.7
27	22.3
34	28.0
41	33.3

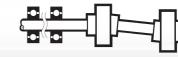
Réf. 221 (pas dans le tableau principal). Combinaison de grands et petits alésages. Voir explications sur la page ci-après

Moyeux à serrage périphérique



Réf. 205 Construction avec segments de serrage




Vue type

Installation

correct

incorrect

Décalage angulaire jusqu'à 10° selon le type Décalage radial jusqu'à 1mm pour les défauts d'alignement extrêmes

correct

Les Uni-Lat standard ne peuvent pas être utilisés par paires. Des versions spécifiques sont prévues dans ce cas.

Renseignements sur demande.

Matériaux & Finitions

Tailles de moyeux 18 & 27: Laiton BS 2874 CZ121

Alliage Alu Al Eco 62 Sn T9 Tailles de moyeux 34 & 41:

Finition Irridite NCP

Visserie: Acier bruni

Colliers de serrage (tailles 18 & 27): Alliage Alu Al Eco 62 Sn T9

Finition Irridite NCP

Anneaux-support, toutes tailles: Acétal (noir)

Plage de températures

-20°C à +60°C

Uni-Lat Accouplements universels / à déplacement latéral

DIMENSIONS & CODES DE COMMANDE

Taille	Moyeux à vis	Moyeux à	ØD	L	^① L1	^② L2	ØB1, ØB2		Fixations		④ Moment	④ Masse
	de blocage	serrage périphérique					max	Vis	③ Couple	Clé	d'inertie kgm2	kg
	REF. ACCO	UPLEMENT							Nm	mm	x 10-8	x 10-3
	201.18	-	18.0	14.2	4.6		5	M3	0.94	1.5	20	7
18	203.18	-	10.0	19.1	7.0	5.1	6.35	IVIS	0.34	1.3	20	,
	-	207.18 ‡ 218	19.1	13.1	7.0		0.33	M2.5	1.32	2.0	55	11
	201.27	-		19.1	6.1		8	M3	0.94	1.5	91	16
27	203.27	-	28.0	25.4	9.3	6.9	10	IVIJ	0.34	1.3	31	10
	-	207.27 ‡ 218					10	M3	2.43	2.5	220	26
	201.34	-		25.2	8.1	8.9	10	M4	2.27		165	17
34	203.34	-	33.7	30.7	10.9		12.7	IVIT	2.21	2.0	103	17
	-	205.34		30.7	10.5		10	M2.5	1.32		183	20
	201.41	-		28.4	8.6		12.7	M4	2.27	2.0	476	30
41	203.41	-	41.4	38.1	13.5	11.2	16	M5	4.62	2.5	470	30
	-	205.41		30.1	13.3		12.7	M4	5.66	3.0	550	40
70	203.70	-	CO O	74.0	28.5	47.0	22	M6	7.60	3.0	7315	189
70	-	205.70	69.0	74.0	20.3	17.0	22	M6	19.3	5.0	7315	189

- Longueur d'alésage traversant. Les arbres ne doivent pas pénétrer au-delà de L1 lors du fonctionnement.
- Distance nominale entre les arbres insérés jusqu'en L1.
- ③ Couple de serrage recommandé.
- (4) Les valeurs s'appliquent aux accouplements avec alésages max.
- © Couple max. Sélectionner une taille où le Couple max. est supérieur au couple de fonctionnement x facteur de fonctionnement. (voir page 6)
- (§) Les accouplements peuvent fournir jusqu'à ±1mm de compensation radiale et ±10° de compensation angulaire (5° pour la réf. 207) si nécessaire. Respecter les valeurs données pour une durée de vie maximum sans jeu. Isolation électrique entre les arbres > 3kV pour tous les modèles, avec décalage à 5°.
- ② Les valeurs sont mesurées entre les deux arbres avec alésage maxi., sans défaut d'alignement. et à 50% du couple max.
- Valeurs instantanées.
- ‡ *Réf. 207 uniquement.* Insérer les 2 codes d'alésage à la place de ‡.

Accouplement réf. 221

En spécifiant la réf. 221 (non indiquée dans les tableaux, voir diagramme sur la page précédente), vous pouvez combiner les alésages proposés pour la réf.201 avec ceux proposés pour la réf.203,

Par exemple, 221.27.2432 désigne la taille 27 alésages \emptyset 6,35 \bullet 10

IMPORTANT

La capacité de charge dépend des conditions de fonctionnement: voir page 6 pour plus de détails

PERFORMANCES à 20°C

Taille	^⑤ Couple max	© Compensa @ 300		① Tors	sion	Ах	tial	Couple statique de			
	Nm	Angulaire ± deg	Radiale ± mm	Taux deg / Nm	Rigidité Nm / rad	Charge max ® ± N	Rigidité N / mm	rupture Nm			
18	0.3		0.2	2.3	25	19	155	0.9			
27	1.7		0.2	0.6	92	31	350	5.0			
34	2.5	2	0.25	0.4	146	34	300	7.5			
41	3.5		0.25	0.19	299	39	250	10.5			
70	12.0		0.25	0.19	1300	75	540	68			

ALÉSAGES STANDARD

Accouplement		plement ØB1, ØB2 +0.03/0mm																			
Taille	Réf.	3	3.175	4	4.763	5	6	6.350	7.938	8	9.525	10	12	12.700	14	15.875	16	18	19	19.05	20
	201.18	•	•	•	•	•															
18	203.18						•	•													
	207.18	•	•	•	•	•	•	•													
	201.27	•	•	•	•	•	•	•	•	* •											
27	203.27										•	•									
	207.27					•	•	•		•	•	•									
	201.34						•	•		•	•	•									
34	203.34												•	•							
	205.34						•	•	•	•	•	•									
	201.41						•	•		•	•	•	•	•							
41	203.41														•	•	•				
	205.41						•	•		•	•	•	•	•							
70	203.70												•	•	•	•	•	•	•	•	•
70	205.70												•	•	•	•	•	•	•	•	•
Code d'alésage		14	16	18	19	20	22	24	27	28	31	32	35	36	38	41	42	45	46	47	48
Adaptateur diamétral correspondant						251		253		254* 255		257		259			260				261

Les diamètres pour lesquels un adaptateur diamétral est associé peuvent s'adapter à des arbres d'un diamètre inférieur. Voir les détails de la page 56.

^{*}Remarquer que l'adaptateur 254 est dédié à l'accouplement réf. 201.27. Utiliser l'adaptateur 255 pour tous les diamètres 8mm.